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Abstract. The critical dynamics of the one-dimensional Ising system with conserved
magnetisation is studied by the real-space renormalisation group approach. The relaxation
of odd and even spin-operator perturbations is calculated. The critical exponent obtained
by an exact transformation is z = 3 in agreement with the conventional theory.

1. Introduction

Recent progress in the understanding of critical dynamics has been made by using the
renormalisation group (RG) technique (Hohenberg and Halperin 1977). Most of the RG
works are based on the Glauber model (Glauber 1963) and its generalisations. This
model describes an Ising spins system, o; = £1. The spins are assumed to flip indepen-
dently in time with rates which are chosen to guarantee the ergodicity of the system.
This model is purely relaxational and relaxes via an interaction with the heat bath. The
continuum version of this model (Myerson 1976) was also generalised to describe
conserved quantities and has been studied extensively since 1972 using the € expansion
around four and six dimensions (Halperin et al 1972, Hohenberg and Halperin 1977).

It is only in the last year that the real-space static RG technique (Niemeijer and van
Leeuwen 1976) was generalised to the study of critical dynamics (Achiam and Koster-
litz 1978, Achiam 1978a, b, 1979a, b, ¢, d, Kinzel 1978, Mazenko et al 1978, Suzuki et
al 1979, Chui et al 1979, Shiwa preprint). All of these works are based on the original
Glauber model, and none of them include conserved quantities. Thus our knowledge of
the critical dynamics of low-dimensional systems is restricted to only one universality
class: the Ising system with non-conserved quantities.

In this work we are studying another dynamical universality class: the dynamics of
an Ising system with a conserved magnetisation. The corresponding model with the
continuum spin was studied by Halperin ez al (1974) using the e-expansion technique.
They called this model ‘model B’ and found that the dynamic exponent, z, which
characterises the dependence of the relaxation rate of the order parameter upon the
correlation length is z = 4 — 7 to all order of €, where n, as well as other static exponents,
have their standard definitions, e.g. Stanley (1971). This result is the one suggested by
the conventional theory of van Hove (1954), and is expected to hold in all dimensions.
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However, the € expansion itself is not valid for low dimensions, hence the generalisation
of the above result to low-dimensional systems is not trivial at all.

In order to do it we started with a model in which the order parameter is conserved
which was suggested by Kawasaki (1966). However, as we shall see in this paper, this
model describes a mechanism of relaxation which is irrelevant in the RG sense. We
studied a similar model which includes the model of Kawasaki as a special case. We
applied the real-space time-dependent renormalisation group (TRG) approach to a
one-dimensional Ising system which relaxes according to this model. We found that the
conventional theory is correct for this universality class, a result which is not surprising.

The paper is organised as follows. In § 2, we represent the kinetic model and review
the TRG technique. In § 3, we perform the transformation of the master equation using
the decimation transformation. From the transformation we find the dynamic exponent
z. In § 4, we discuss the results.

2. The model, the method and the notations

2.1. The kinetic model

This model describes the time-dependent behaviour of a large interacting spin system
whose equilibrium is determined by an Ising Hamiltonian. The system is brought to a
constrained equilibrium state. Then, at the time ¢ = 0 the constraint is removed, and the
system relaxes towards the final equilibrium via an interaction with a heat bath which is
not treated explicitly. The relaxation is not a total free relaxation as in the Glauber
model (1963) but is restricted to conserve the total magnetisation. We assume the
relaxation to be an instantaneous random spin-exchange transformation between two
spins. This procedure can be described by an empirical master equation for the spin
probability distribution, P({c’}, t), and a bare time scale, 7, of a spin system {o = +1} as
follows:

7dP ({o}, t)/dt

1
=_N[Z m,'(g'l,...,0',',...,G'j,.-.,U,,)P(O'],..-,O',’,---,O'j,-.-,O'n,t)
ij
—Z W/,-j(a'l,...,0',-,...,o’i,...,0',,)P(0'1,...,a',-,...,a'i,...,an,t)]
if
1
=L(@)P(o, )=~ Y (1=py)Wy(a)P(a, 1) (2.1)
ij

where p;; is a spin-exchange operator:

p,',f(0'1,...,0',-,...,0',-,...,O'n)=f(0'1,-..,0',',...,0',-,...,O'n),

and the transition probability, W, satisfies the detailed balance which ensures the
ergodicity of the system:

(1=py) Wi(o)Pe(o) =0, (2.2)

and N is the number of lattice points.
The final equilibrium state, P.(o)=P(c,t =) is given by a reduced Ising-like

Hamiltonian, H,

P.(0)=exp(~H/kzT)=exp(H)/Z (2.3)
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where the partition function Z normalises P,

{Z}Pe= 1. (2.4)

The reduced Hamiltonian which is studied in this work is the usual nearest-neighbour
(NN) Ising Hamiltonian,

}?:KZO','O'H]. (25)

The master equation (2.1) can be written in a slightly different form:
7 dP (o, 1)/dt = ~ZLp (0, 1) (2.6)
where ¢ (o, t) measures the deviation from equilibrium,
¢ (o, 1)=P(o, 1)/ Pe(0). 2.7)

From equation (2.2) we can see that % is given by
1
£=Y % L= P Wil 1=py). (2.8)
if

The relation (2.2) does not determine W;; uniquely. We will use (Achiam and Kosterlitz
1978, Achiam 1978b, 1979a, b, ¢)

"Vij(ffia'j)=[Pe(0'1, ey Oy ey Oy ~--’0'n)/Pe(o'1’-~~,o'i,---,a'j,-'-:a'n)]l/z- (2.9)

There is no a priori correlation between i and j. This is in contrast to the kinetic
mode] of Kawasaki (1966) which assumes that i and j are nearest neighbours.

2.2. The time-dependent RG transformation

The time-dependent RG transformation is a transformation of the master equation (2.6)
to a similar master equation which is defined on a scaled coordinate—time space. The
transformation is performed in two steps:

2.2.1. The coordinate-space scaling. The kinetic equation (2.6) of the probability
distribution of a set {¢} is transformed to a new kinetic equation of a new probability
distribution of a set of spin variables. The new spin variables, u, = +1, are definedon a
lattice with the same symmetry as the first one, but whose lattice constant is enlarged by
a factor of . The transformation is of the form

flu)= (Z} T(w, o)f(o) (2.10)

and is applied to the two sides of equation (2.6). T is subject to the following
conditions:

(i) {Z} T(u,o)=1 (2.11)
(ii) T(s, o)=0 (2.12)

(iii) The transformation should not change the symmetry of the lattice.
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T is time-independent. Hence the result of the transformation of the LHS of equation
(2.6) is just the static RG transformation,

P'(u) =(Z} T(u, o)P(o). (2.13)

The probability distribution can be represented in the parameter space K = {K,} of the
interactions appearing in H (see 2.3). Due to the conditions which T fulfil, the static RG
transformation can be represented as a transformation of the parameter space

K' =RK (2.14)
where K'={K} are the interactions of P'{). The fixed point of this transformation
K*=RK* (2.15)

is associated with a critical point (or with zero correlation) (Wilson and Kogut 1974).

The transformation of the rRHs of (2.6) is analysed in a similar way. The operator &
depends on P via (2.8) and (2.9). Thus the transformation of P to P' determines the
transformation of (o) into £'(1). The perturbation ¢ isrepresented in the parameter
space by h, the fields adjoint to the spin operators O (u),

d(o)=1+{h.0()). (2.16)
Using this notation, the transformation of the rRHs of (2.6) is

~Z'(Qh). Ou)]. (2.17)
Thus under the position transformation (2.6) becomes

Pe(u}d/dt [h. O(r)]=-2L[(Qh). O(u)] (2.18)

where A’ = Ah is the static RG transformation of the parameters A.

2.2.2. The time scaling. Suppose that A and  are scalars A and w. In such case the
transformation

r'=br ) (2.19)
where
b =A/w (2.20)

will return the transformed kinetic equation to the form of (2.6). The standard rRG
suppositions identify z as the dynamic exponent. The RG suppositions, as well as their
application to the case where A and {2 are two non-commuting matrices, are discussed
elsewhere (Achiam 1978b, 1979a, Achiam and Kosterlitz 1978 and unpublished
report).

3. The time-dependent RG transformation

To perform the TRG of the model described by equations (2.3), (2.5), (2.6), (2.8) and
(2.9) we have to know ¢ which is given by (2.7). However, this is equivalent to having
the solution of (2.6), which we do not know. We can overcome this problem by using
the ideas of the RG approach. It is sufficient to examine ¢ which spans only a subspace
of the parameter space, as long as this subspace is invariant under the TRG trans-
formation and gives the slowest relaxation. (Achiam 1979a, Achiam and Kosterlitz
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unpublished report). There are two families of such subspaces: perturbations which are
even under spin reversal, and perturbations which are odd under spin reversal.

In this section we shall study the TRG of the even perturbations: the invariant
subspace of the energy perturbation

¢1=1+]112(0'i0'i+1‘<0i0';‘+1>)- (3.1)

The odd subspace which gives a faster relaxation will be discussed in the appendix.
According to the discussion in the previous section, we first have to perform the static
RG of P, and ¢;. The RG transformation we choose is the decimation transformation
which scales the coordination space by a factor of b = 3 (Nelson and Fisher 1976). That
is, T is given by

T=H5(P«f "Uaj)- (3.2)

The calculation is easily done with the normalised probability distribution

pe=%1:[P’e‘ PE=31+(owois1) (3.3)

where
¢ =tanh K. (3.4)

The RG transformation can be performed in each cell, j, which contains the oy,
k =3j,3j+1, 3j+2, independently of the other cells. The result of the transformation
is

Péj(,u-j, #1‘+1)z%(1 +§3IL,‘IJ~,'+1) (3.5)
or, in the parameter space representation,
=2 (3.6)

Equation (3.6) is not expressed in the usual form (2.14). However, this form can be
achieved by expanding ¢ in 8¢ = ¢ -~ ¢* around the fixed-point solution ¢* = 1:

(8¢) =38¢. (3.7

Going back to equation (3.1) and performing a few arithmetic steps, one can see that the
perturbation field h, is also scaled according to (3.7). Thus we get A =3,

The calculation of the RG transformation of the RHS of (2.6) is more tedious. Before
doing it, it is worth expressing the RHs explicitly. Evaluating the operator 1 - p; gives

(I=pi)p =h(o; = o) (0i-1+ Tir1 — Tj-1— 1), (3.8)

The other factor which appearsin %; is W,P.. From (2.9), it follows that this quantity is
invariant to permutations of ¢; and ;. Now, since equation (3.8) vanishes unless

o= —0, (3.9)

we can see that £, is independent of the spins o; and o;. We can now use (2.5), (2.9) and
(3.9) to express W;; as

W, =exp{—K([oi(ois1+0i-1) + oi(0j41 + 05-1) ]} (3.10)

(if / and j are NN, the multiples terms have to be omitted). Multiplying P. by W, results
in the vanishing of the interactions around o; and ¢;. This is indicated in figure 1 by the
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i=3 02 i-1 g el ie2 is3 J=3 j-2 1 je1 je2 je3

Figure 1. The configuration of spins that appear in %;; whose RG transformation is studied
in equations (3.11)~(3.17). The dots are the spins which are summed up while the X are the
spins which become the new u variables. The interactions which are cancelled in P, by W;;
do not appear in the figure, while the other interactions are marked by a full line.

absence of the full line between the corresponding lattice points. For example, the
configuration of i and j marked in figure 1 contributes to P. Wj;

1
P.W; ~Z exp[K (0i-301—2+ 012071+ Ti110i42+ 420113 + 0302

+ 07201+ Tpe10j42 + T12043) ] (3.11)

We shall now apply the RG transformation to the configuration illustrated in figure
1. The trace over a typical o, contributes two kinds of terms:

Tr exp(Ko,0.,,) =2 cosh K — eX (3.12a)
on K->

and
Tr o, exp(Kouom) = 20+, sinh K —> o, e*. (3.12b)
Tp K->

In figure 1 we chose the o; and o; to be the new w; and u, variables where i =3/ and
j =3k. Thus, the final contribution of (3.8) and (3.11) is

exp(8K ) (ur — pae ) (i1 + pre1 = fic—1 — Mk +1)- (3.13)

The other part of P.(o) is of the spins before i — 3, after j + 3 and between /i + 3 and j — 3.
It gives the usual static RG transformation to the corresponding terms in P (u). Thus,
using (3.10) this factor can be written as

, 1
Po(u) Wi (i, I«Lk)ZT; (3.14)
where
A =[(63K+3 e—K)(e—3K+3 eK)]l/Z____)31/2 eZK (315)
K-

is the contribution to the partition function from the block / » / + 3 which is not included
in (3.13). The RG transformation results through the combination of (3.14) with (3.13).
Summing over all values of / =3/ and j = 3k gives

(1/9N)%Pé(u)Wzk(l—pzk)tb(u)=%$’(u)¢(u) (3.16)

and thus
w=1/3> (3.17)

There are three other kinds of contributions. If both ¢; and o; do not appear in 7, (3.2),
and are summed up in the trace, then

Y P.Wy(oi—0;) =0 (3.18)

oo}
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because P.W;; is independent of o; and a;. If only one of them, say /, becomes a w
variable under the RG transformation, then the two configurations of / and j drawn in
figure 2 give

2p{pe1 + -1~ @k —Mk—l)P’e"Vlk exp(Kpupti-1) eSK/Az~ (3.19)
JoR] H B Hyeq K Hiey
H—o—e K —o—X oo Yoo X o X 0

/ i

4 My
X—s—s

X o——x ... )e-o——o%(-—oox ()

Figure 2. The configuration of the spins that appear in %; whose RG transformation is
studied in equation (3.19). The notations are as in figure 1.

The extra exponent can be expanded, leading to three typical terms. One is a term
similar to (3.14). Collecting this contribution and (3.16) gives w = 1/3%. The other
terms are proportional to Wiuuy, are invariant under the RG and are also scaled
according to w = 1/3°.

In all the terms which have been discussed above i and j were far enough apart. If
we examine other configurations where / and j are less than six lattice constants apart,
we see that the RG transformation contributes terms which vanish as K — 00. This case
was studied by Kawasaki (1963). In his model he assumed / and j to be NN (see figure
3\. The RrRG transformation of this term result with

PL(w) W) 2 (i1 — prer) €5/ A? (3.20a)
PLlu) Wil )2 (pis1 — 1) €35/ A2 (3.20b)
where W, = exp[—Ku;(ui+1 + pi-1)]. These two contributions mutually cancel and thus

do not contribute to the transformed kinetic equation.

Hy

X o—e—X w

%

T

Hy

!

, ‘—X(GJ

Figure 3. The configurations of the spins that appear in %, whose RG transformation is
studied in equation (3.20q, b). The notations are as in figure 1.

9

4. Discussion

In the previous section we calculated the scale factors for the even perturbation, and
found
w=5 A=3. (4.1)

Employing equation (2.20) we get the dynamic exponent
z=3. (4.2)
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For the Ising model in one dimension n = 1, and hence (4.2) can be written as
z=4-n. (4.3)

This is exactly as predicted by the conventional theory (van Hove 1954). This theory
does not predict any anomaly in the transport coeflicient. Thus the diffusion constant
vanished as £ >*" where ¢ is the correlation length which diverges at the critical point.
From the conservation of the order parameter we can see that the relaxation rate varies
as

wm ~ €. (4.4)

It is known (Kawasaki 1966) that the conventional theory value is an upper limit of z.
Here we found that the z is actually at this upper limit. This result is expected from the
study of a similar conserving model near four dimensions using the e expansion
(Halperin et al 1974). Due to the fact that in one dimension the RG transformation can
be performed exactly, our result here is exact.

The RG calculation which was performed in this paper sheds light on the mechanism
governing the slowing down of the order parameter relaxation. The model of Kawasaki
suggests that the conservation mechanism is of a short-range nature, i.e. the spins which
exchange their values are nearest neighbours. We found that this mechanism is
irrelevant in the RG sense, and that the leading mechanism is of long range.

In this paper we also examine the result of the effective antiferromagnetic pertur-
bation as represented by the odd subspace of spin perturbations. The result presented
in the appendix shows that the antiferromagnetic perturbation relaxes faster than the
energy perturbation.

Appendix

The antiferromagnetic-like perturbation

-¢2=1+h2§:(‘_‘1)j0'j (A1)

is a perturbation which conserves magnetisation. Thus we must check whether it yields
a slower relaxation than that of the energy like perturbation ¢; (3.1). Each of the two
perturbations, ¢; and ¢», form an invariant parameter subspace of the kinetic equation
(2.1). Thus we can study each of them separately. In this appendix we shall calculate
the z, corresponding to ¢, and find it to be smaller than (4.2).

Using the decimation in b = 3 blocks (3.2), we find the recursion relation

h = hy{l +2[exp(~4K)—1]lexp(~4K) +3]7'}. (A2)
At the fixed point K =0
A=3 (A3)

The rules for calculating the contributions of different configurations of i and j to the
renormalisation of the RHs of (2.6) are the same as for the energy perturbation. Thus,
the configuration of figure 1 in which /= 3/ and j = 3K, and are far enough apart,
contribute a functional form which is similar to (3.16), with the factor

exp(8K)/A* — 4. (Ad)

K->
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Thus we obtain w =§ and w/A =3, which results in
Z,=1. (A5)

As in the energy perturbation case, the other configurations contribute to the rRG
transformation terms which vanish close to the fixed point. We thus obtain the same
phenomenon we found for the energy-like perturbation. The relevant conservation
mechanism is of long range. However, the antiferromagnetic-like perturbation relaxes
faster than the energy-like perturbation. The slowest time scale is that of the energy-
like perturbation, Z = 3.
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