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Diffusion in the one-dimensional Ising model 
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and 
Department of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel 

Received 19 June 1979 

Abstract. The critical dynamics of the one-dimensional king system with conserved 
magnetisation is studied by the real-space renormalisation.group approach. The relaxation 
of odd and even spin-operator perturbations is calculated. The critical exponent obtained 
by an exact transformation is z = 3 in agreement with the conventional theory. 

1. Introduction 

Recent progress in the understanding of critical dynamics has been made by using the 
renormalisation group (RG) technique (Hohenberg and Halperin 1977). Most of the RG 
works are based on the Glauber model (Glauber 1963) and its generalisations. This 
model describes an Ising spins system, U, = *l. The spins are assumed to flip indepen- 
dently in time with rates which are chosen to guarantee the ergodicity of the system. 
This model is purely relaxational and relaxes via an interaction with the heat bath. The 
continuum version of this model (Myerson 1976) was also generalised to describe 
conserved quantities and has been studied extensively since 1972 using the E expansion 
around four and six dimensions (Malperin et a1 1972, Hohenberg and Halperin 1977). 

It is only in the last year that the real-space static RC technique (Niemeijer and van 
Leeuwen 1976) was generalised to the study of critical dynamics (Achiam and Koster- 
litz 1978, Achiam 1978a, b, 1979a, b, c, d, Kinzel1978, Mazenko eta1 1978, Suzuki et 
a1 1979, Chui et a1 1979, Shiwa preprint). All of these works are based on the original 
Glauber model, and none of them include conserved quantities. Thus our knowledge of 
the critical dynamics of low-dimensional systems is restricted to only one universality 
class: the Ising system with non-conserved quantities. 

In this work we are studying another dynamical universality class: the dynamics of 
an Ising system with a conserved magnetisation. The corresponding model with the 
continuum spin was studied by Halperin et a1 (1974) using the €-expansion technique. 
They called this model ‘model B’ and found that the dynamic exponent, z ,  which 
characterises the dependence of the relaxation rate of the order parameter upon the 
correlation length is z = 4 - 7) to all order of E ,  where q, as well as other static exponents, 
have their standard definitions, e.g. Stanley (1971). This result is the one suggested by 
the conventional theory of van Hove (1954), and is expected to hold in all dimensions. 
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Foundation (BSF), Jerusalem. 
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However, the E expansion itself is not valid for low dimensions, hence the generalisation 
of the above result to low-dimensional systems is not trivial at all. 

In order to do it we started with a model in which the order parameter is conserved 
which was suggested by Kawasaki (1966). However, as we shall see in this paper, this 
model describes a mechanism of relaxation which is irrelevant in the RG sense. We 
studied a similar model which includes the model of Kawasaki as a special case. We 
applied the real-space time-dependent renormalisation group (TRG) approach to a 
one-dimensional Ising system which relaxes according to this model. We found that the 
conventional theory is correct for this universality class, a result which is not surprising. 

The paper is organised as follows. In Q 2, we represent the kinetic model and review 
the TRG technique. In 0 3, we perform the transformation of the master equation using 
the decimation transformation. From the transformation we find the dynamic exponent 
z. In 0 4, we discuss the results. 

2. The model, the method and the notations 

2.1. The kinetic model 

This model describes the time-dependent behaviour of a large interacting spin system 
whose equilibrium is determined by an Ising Hamiltonian. The system is brought to a 
constrained equilibrium state. Then, at the time t = 0 the constraint is removed, and the 
system relaxes towards the final equilibrium via an interaction with a heat bath which is 
not treated explicitly. The relaxation is not a total free relaxation as in the Glauber 
model (1963) but is restricted to conserve the total magnetisation. We assume the 
relaxation to be an instantaneous random spin-exchange transformation between two 
spins. This procedure can be described by an empirical master equation for the spin 
probability distribution, P({u} ,  t), and a bare time scale, T ,  of a spin system {U = *l} as 
follows: 

d P  ({cl, t)/dt 
1 
N ii 

= --[E Wijbl , .  . . , ui, * . . ,ai,. . . , U,,)P(Ul,. . * ,(Ti,. * * ,ai,. . * , un, t) 

-c Wjj(U1,. . . ,ai,. . . ,ui,. . . ,Un)P(Ul,. . . ,ai , .  . . ,uj,. . . ,Un ,  t ) j  
ij 

1 
=L(u)P(u,  t)=--- ( l-pij)wij(u)P(u,  t )  

N i j  

where p i j  is a spin-exchange operator: 

Pijf(U1, . * . , ui, * * * , U,, . . . , an) = f(u1, . . * , ai, . . 1 , uj, . * . , gn), 

and the transition probability, Wii, satisfies the detailed balance which ensures the 
ergodicity of the system: 

( 2 . 2 )  

The final equilibrium state, P e ( u )  3 P(u,  t = CO) is given by a reduced Ising-like 

(1 -pij)  Wij(u)Pe(u) = 0,  

and N is the number of lattice points. 

Hamiltonian, a, 
P,(a) = exp(-H/k,T) exp(R) /Z  (2.3) 
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where the partition function 2 normalises P,, 

P,= 1. 
{U} 

(2.4) 

The reduced Hamiltonian which is studied in this work is the usual nearest-neighbour 
(NN) Ising Hamiltonian, 

R = K c uiu,+1. (2.5) 
i 

The master equation (2.1) can be written in a slightly different form: 

7 d P  (U, t) /dt  = -94(~, t )  

where (a, t )  measures the deviation from equilibrium, 

4(u, t )  -P(a; t ) / P e ( a ) .  

From equation (2.2) we can see that 9 is given by 

(2.8) 

The relation (2.2) does not determine Wii uniquely. We will use (Achiam and Kosterlitz 
1978, Achiam 1978b, 1979a, b, c) 

1 
” N 
9.. = --PeWij(u)(l - p i j ) .  9 q  Zij 

i j  

1 / 2  Wij(aiaj)=[P,(ul,. . . , ~ j ,  . . . , ai,. . . , u,)/P,(u~, . . . , ai, . . . , ~ j ,  . . . , U,)] (2.9) 

There is no a priori correlation between i and j .  This is in contrast to the kinetic 
model of Kawasaki (1966) which assumes that i and j are nearest neighbours. 

2.2. The time-dependent RG transformation 

The time-dependent RG transformation is a transformation of the master equation (2.6) 
to a similar master equation which is defined on a scaled coordinate-time space. The 
transformation is performed in two steps: 

2.2.1. The coordinate-space scaling. The kinetic equation (2.6) of the probability 
distribution of a set {a} is transformed to a new kinetic equation of a new probability 
distribution of a set of spin variables. The new spin variables, p, = *l, are defined on a 
lattice with the same symmetry as the first one, but whose lattice constant is enlarged by 
a factor of b. The transformation is of the form 

(2.10) 

and is applied to the two sides of equation (2.6). T is subject to the following 
conditions: 

(2.11) 

(ii) T ( P ,  a )  3 0 (2.12) 

(iii) The transformation should not change the symmetry of the lattice. 



1828 Ya’akou Achiam 

T is time-independent. Hence the result of the transformation of the LHS of equation 
(2.6) is just the static RG transformation, 

(2.13) 

The probability distribution can be represented in the parameter space K = {K,} of the 
interactions appearing in (see 2.3). Due to the conditions which T fulfil, the static RG 

transformation can be represented as a transformation of the parameter space 

K ’ =  RK (2.14) 

where K‘ = {Kh are the interactions of P’(,u). The fixed point of this transformation 

K *  = RK* (2.15) 

is associated with a critical point (or with zero correlation) (Wilson and Kogut 1974). 
The transformation of the RHS of (2.6) is analysed in a similar way. ’The operator 22 

depends on P via (2.8) and (2.9). Thus the transformation of P to P’ determines the 
transformation of Z ( a )  into Z’(w)). The perturbation q5 is-represented in the parameter 
space by h, the fields adjoint to the spin operators Q ( w ) ,  

(2.16) 4(c)  = 1 + ( h  WCL)). 
Using this notation, the transformation of the RHS of (2.6) is 

-Z’[(nh) - W ) l .  (2.17) 

Thus under the position transformation (2.6) becomes 

rP:(pU.) d/dt [ h  . O ( / A ) ] =  - 9 ’ [ ( f i h ) .  Q ( p ) ]  (2.18) 

where h‘ = Ah is the static RG transformation of the parameters h. 

2.2.2. The time scaling. Suppose that A and fl are scalars A and w. In such case the 
transformation 

r’ = b‘r 

b‘ = h / w  
where 

(2.19) 

(2.20) 

will return the transformed kinetic equation to the form of (2.6). The standard RG 
suppositions identify z as the dynamic exponent. The RG suppositions, as well as their 
application to the case where A and sb. are two non-commuting matrices, are discussed 
elsewhere (Achiam 197&b, 1979a, Achiam and Kosterlitz 1978 and unpublished 
report). 

3. The time-dependent RG transformation 

To perform the TRG of the model described by equations (2.31, ( 2 3 ,  (2.6), (2.8) and 
(2.9) we have to know q5 which is given by (2.7). However, this is equivalent to having 
the solution of (2.6), which we do not know. We can overcome this problem by using 
the ideas of the RG approach. It is sufficient to examine q5 which spans only a subspace 
of the parameter space, as long as this subspace is invariant ilnder the TRG trans- 
formation and gives the slowest relaxation. (Achiam 1979a, Achiam and Kosterlitz 
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unpublished report). There are two families of such subspaces: perturbations which are 
even under spin reversal, and perturbations which are odd under spin reversal. 

In this section we shall study the TRG of the even perturbations: the invariant 
subspace of the energy perturbation 

($I= l + h l  c (o;L7,+l-(a,L7,+1)). (3.1) 
I 

The odd subspace which gives a faster relaxation will be discussed in the appendix. 
According to the discussion in the previous section, we first have to perform the static 
RG of P, and The RG transformation we choose is the decimation transformation 
which scales the coordination space by a factor of b = 3 (Nelson and Fisher 1976). That 
is, T is given by 

T = n S(kj - . ~ 3 j ) .  
1 

The calculation is easily done with the normalised probability distribution 

P, = 4 JJ P," P," z$(l+(Ukflk+l) 
k 

(3.2) 

(3.3) 

where 

5 = tanh K. (3.4) 
The RG transformation can be performed in each cell, j ,  which contains the a, 

k = 3j, 3j + 1, 3j -t 2, independently of the other cells. The result of the transformation 
is 

PLj(pj, kj+l) = $ ( I +  5 3 ~ j ~ ~ j + l )  ( 3 3  
or, in the parameter space representation, 

5' = 13.  (3.6) 
Equation (3.6) is not expressed in the usual form (2.14). However, this form can be 
achieved by expanding [ in 85 = 5 -- f V  around the fixed-point solution l* = 1: 

( S L ) '  = 384. (3.7) 
Going back to equation (3.1) and performing a few arithmetic steps, one can see that the 
perturbation field hl is also scaled according to (3.7). Thus we get A = 3. 

The calculation of the RG transformation of the RHS of (2.6) is more tedious. Before 
doing it, it is worth expressing the RHS explicitly. Evaluating the operator 1 - p U  gives 

( - plJ )I$ = h (Cl - a] (Cl -1  + + 1 - aJ-l - 1 (3.8) 
The other factor which appears in 2,, is W,,P,. From (2.9), it follows that this quantity is 
invariant to permutations of wz and U,. Now, since equation (3.8) vanishes unless 

U,  = --VI (3.9) 
we can see that Z,, is independent of the spins U, and a,. We can now use (2.5), (2.9) and 
(3.9) to express W,, as 

(3.10) 

(if i and j are NN, the multiples terms have to be omitted). Multiplying P, by W,, results 
in the vanishing of the interactions around ~ 7 ,  and r,. This is indicated in figure 1 by the 

W,, =exp{-K[a,(~,+i  +aI-i) + ~ J ( C J , + I  +aJ-i)l} 
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p k r l  

;+* *fjlj( ....... X-4b-s’ 
i -3  i -2  i-1 (T, i + l  i + 2  i.3 J - 3  j - 2  j-1 j j.1 j + 2  j + 3  

Figure 1. The configuration of spins that appear in 2Zij whose RG transformation is studied 
in equations (3.11)-(3.17). The dots are the spins which are summed up while the X are the 
spins which become the new p variables. The interactions which are cancelled in P, by Wii 
do not appear in the figure, while the other interactions are marked by a full line. 

absence of the full line between the corresponding lattice points. For example, the 
configuration of i and j marked in figure 1 contributes to P, Wij 

+ u j - Z u j - l +  u j+ lu j+Z  + o j . + ~ ~ j + 3 ) ] .  (3.11) 

We shall now apply the RG transformation to the configuration illustrated in figure 
1. The trace over a typical v,, contributes two kinds of terms: 

Tr exp(Ku,,u,) = 2 cosh K - e K  
mn K +CC 

and 
Tr U“ exp(Ku,,u,) = 2u, sinh K - U, eK. 
U” KtCC 

( 3 . 1 2 ~ )  

(3.126) 

In figure 1 we chose the ui and uj to be the new p l  and &k variables where i = 31 and 
j = 3k. Thus, the final contribution of (3.8) and (3.11) is 

(3.13) 

The other part of Pe(u) is of the spins before i - 3, after j + 3 and between i + 3 and j - 3. 
It gives the usual static RG transformation to the corresponding terms In P k ( p ) .  Thus, 
using (3.10) this factor can be written as 

exp(SK)(p/ - @ k ) ( @ l - I  +pf+1 - W k - l  - p k + l ) .  

(3.14) 

where 

(3.15) 

is the contribution to the partition function from the block i + i + 3 which is not included 
in (3.13). The RG transformation results through the combination of (3.14) with (3.13). 
Summing over all values of i = 31 and j = 3k gives 

(1/9N) 1 P : ( P )  wlk(1 - P i k ) 4 ( p )  = 3 ’ b ) d  h) (3.16) 

1/2 2K A = [(e3“ + 3 e-K)(e-3K + 3 eK)ll” -+ 3 e 
K-CC 

lk 

and thus 
w 1 =  1/33. (3.17) 

There are three other kinds of contributions. If both ui and mj do not appear in T, (3.2), 
and are summed up in the trace, then 

(3.18) 
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because P, Wii is independent of vi and rj. If only one of them, say i, becomes a ,u 
variable under the RG transformation, then the two configurations of i and j drawn in 
figure 2 give 

2p/(@l+l -t Pi-1 - @ k  -@k-l)PkWik eXP(Kpkpk-1) esK/A3. (3.19) 

I/-1 pk-1 f ik I k +  1 

x-0 *+; ..... ) ( ~ ) (  0 tj( la) 

0, 41 

)tc-. 2 *+x ..... x ( 0  0 x lb) 

Figure 2. The configuration of the spins that appear in z,, whose RG transformation is 
studied in equation (3.19). The notations are as in figure 1. 

4 QJ 

The extra exponent can be expanded, leading to three typical terms. One is a term 
similar to (3.14). Collecting this contribution and (3.16) gives w = 1/3'. The other 
terms are proportional to Wlkp&U.k, are invariant under the RG and are also scaled 
according to w = 113'. 

In all the terms which have been discussed above i and j were far enough apart. If 
we examine other configurations where i and j are less than six lattice constants apart, 
we see that the RG transformation contributes terms which vanish as K + 03. This case 
was studied by Kawasaki (1963). In his model he assumed i and j to be NN (see figure 
3). The RG transformation of this term result with 

(3.20a) 

(3.20b) 

where Wl = exp[-Kpl(pi.l +pi-1)]. These two contributions mutually cancel and thus 
do not contribute to the transformed kinetic equation. 

)(-0 2 0 o + [ a J  
a; 3 

Figure 3. The configurations of the spins that appear in Ti, whose RG transformation is 
studied in equation (3.20a, b) .  The notations are as in figure 1 .  

4. Discussion 

In the previous section we calculated the scale factors for the even perturbation, and 
found 

A =3 .  (4.1) 1 w = y  

Employing equation (2.20) we get the dynamic exponent 

z = 3 .  (4.2) 
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For the Ising model in one dimension q = 1, and hence (4.2) can be written as 

2=4-77. (4.3) 

This is exactly as predicted by the conventional theory (van Hove 1954). This theory 
does not predict any anomaly in the transport coefficient. Thus the diffusion constant 
vanished as t-”“ where 5 is the correlation length which diverges at the critical point. 
From the conservation of the order parameter we can see that the relaxation rate varies 
as 

(4.4) 

It is known (Kawasaki 1966) that the conventional theory value is an upper limit of 2.  

Here we found that the 2 is actually at this upper limit. This result is expected from the 
study of a similar conserving model near four dimensions using the E expansion 
(Halperin et a1 1974). Due to the fact that in one dimension the RG transformation can 
be performed exactly, our result here is exact. 

The RG calculation which was performed in this paper sheds light on the mechanism 
governing the slowing down of the order parameter relaxation. The model of Kawasaki 
suggests that the conservation mechanism is of a short-range nature, i.e. the spins which 
exchange their values are nearest neighbours. We found that this mechanism is 
irrelevant in the RG sense, and that the leading mechanism is of long range. 

In this paper we also examine the result of the effective antiferromagnetic pertur- 
bation as represented by the odd subspace of spin perturbations. The result presented 
in the appendix shows that the antiferromagnetic perturbation relaxes faster than the 
energy perturbation. 

r P Z  
W m - <  9 

Appendix 

The antiferromagnetic-like perturbation 

is a perturbation which conserves magnetisation. Thus we must check whether it yields 
a slower relaxation than that of the energy like perturbation (61 (3,l). Each of the two 
perturbations, dbl and d2, form an invariant parameter subspace of the kinetic equation 
(2.1). Thus we can study each of them separately. In this appendix we shall calculate 
the za corresponding to 42 and find it to be smaller than (4.2). 

Using the decimation in b = 3 blocks (3.2), we find the recursion relation 

h;  = hz{ l  + 2[exp(-4K)-l][exp(-4K) +3]-’}. (A21 

At the fixed point K = cx 

A 3.  iA3) 

The rules for calculating the contributions of different configurations of i and j to the 
renormalisation of the RHS of (2.6) are the same as for the energy perturbation. Thus, 
the configuration of figure 1 in which i = 31 and j = 3K, and are far enough apart, 
contribute a functional form which is similar to (3.16), with the factor 

exp(8K)/A4 - a. 
K-a,  
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Thus we obtain w = $ and w / A  = f, which results in 

z, = 1. 

As in the energy perturbation case, the other configurations contribute to the RG 
transformation terms which vanish close to the fixed point. We thus obtain the same 
phenomenon we found for the energy-like' perturbation. The relevant conservation 
mechanism is of long range. However, the antiferromagnetic-like perturbation relaxes 
faster than the energy-like perturbation. The slowest time scale is that of the energy- 
like perturbation, 2 = 3. 
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